BENJAMIN THORNE

✓ me@bthorne.io

in b-thorne

S bthorne.io

f San Francisco, CA

ABOUT

Computational scientist with expertise in scientific machine learning, differentiable programming, probabilistic programming, and high performance computing in Julia and Python. A list of my publications can be found <u>here</u>.

SKILLS

Python: pytorch, tensorflow, numpy, scipy, jax, dask, mpi4py, Cython, Numba **Julia:** CUDA.jl, Flux.jl, DiffEqFlux.jl, ModelingToolkit.jl, DifferentialEquations.jl **Other:** Docker, Podman, Kubernetes, Rancher, Quarto, CSS, Javascript, Git, DVC, AWS [S3, EC2]

EXPERIENCE

Senior Machine Learning Engineer	2023 - present
Atomic Industries	Remote

Physics-based optimization of injection molds

- Developed algorithmic basis for the automated design of cooling systems for injection molding tools. Reduced human expert design time from \sim days to \sim minutes.
- Optimized highly constrained geometric design space, targeting physical properties from Monte Carlo PDE solvers (impelmented in Julia and Jax).

Machine Learning Engineer	2023
National Energy Research Scientific Computing Center, Berkeley Lab	Berkeley, CA

Uncertainty-aware machine learning for high energy physics

- Ran project meetings of 10+ scientists and engineers to align goals and deliverables.
- Collaborated on design of machine learning (ML) challenge platform hosted at NERSC.
- Designed metrics for scoring uncertainty-aware ML algorithms.
- Designed cosmology-based public ML challenge:
 - Designed dataset derived from 200 TB of simulation data stored on archival tape.
 - Distributed computations across 1000's of processes and ~10's of nodes on Perlmutter.
 - Implemented baseline uncertainty-aware convolutional model in PyTorch.

Postdoctoral Researcher	2019 - 2022
University of California, Davis	Davis, CA

Generative modeling of dust maps using VAEs in Tensorflow 🔗

- Created training dataset of 1,000 dust maps from public satellite data.
- Designed and trained convolutional variational autoencoder in Tensorflow.
- Applied trained model to Bayesian inverse problems: data imputation, denoising, inference.

Differentiable likelihoods for cosmology in Julia with CUDA and auto-diff $\boldsymbol{\mathscr{S}}$

- Developed differentiable forward model of 10⁶-pixel CMB datasets in Julia.
- Used Zygote.jl for automatic differentiation and CUDA.jl for GPU acceleration.
- Used sparse approximations & preconditioning to improve memory usage and convergence.
- Distributed MCMC analysis of ~100 GB dataset across 10's of A100 GPU nodes on Perlmutter.

Python Sky Model Simulation Package 🔗

- Developed the *pysm* Python package, widely used by astrophysicists.
- *First author paper* describing the package has ~200 citations.
- Numba and mpi4py used for efficient distributed design, and caching supported for local runs.
- Run on 100's of nodes at NERSC to support Simons Observatory and Stage-4.

Other duties

- Co-organized the weekly cosmology seminar from January 2020 to December 2022.
- Co-supervised PhD students on various projects in machine learning and physics.
- Regularly delivered seminars and conference talks.

EDUCATION

PhD in Astrophysics	2015 - 2019
University of Oxford, Princeton University & Kavli IPMU	Oxford, Princeton, Tokyo

Thesis: "Challenges in probing inflation with primordial gravitational waves" Supervised by Professor Jo Dunkley

Pixel likelihoods for Simons Observatory (SO) forecasting §

- Wrote maximum likelihood estimation (MLE) algorithm for pixelized data using Numba.
- Made Monte Carlo (MC) simulations of SO observations (noise, foregrounds, and systematics).
- Applied MLE to MC simulations to forecast constraints on primordial gravitational wave search.

Data analysis for the Atacama Cosmology Telescope (ACT) §

- Used public satellite data to compute two-point statistics of polarized dust emission.
- Performed Bayesian fit with MCMC to constrain parametric model of the two-point amplitude.
- Used as priors in ACT's 2018 likelihood analysis, included in two collaboration papers.

Novel observables of SU(2)-Axion inflation \mathcal{G}

- Analytically derived novel observables in a parity-violating cosmological model.
- Calculated sensitivities of the LISA and LiteBIRD satellites using Python and Numba.
- *First-author paper* now with 100+ citations.

M.S. & B.S. in Physics	2011 - 2015
University of Oxford, New College	Oxford, UK

Photometric decomposition of barred and double-barred galaxies $\boldsymbol{\mathscr{S}}$

- Collected dataset of galaxy images from SDSS.
- Used χ^2 optimization to determine photometric structure of each galaxy.
- Collaborated with researchers at St Andrew's University on two papers using results.